Microstructure study of a severely plastically deformed Mg-Zn-Y alloy by application of low angle annular dark field diffraction contrast imaging

نویسندگان

  • Dudekula Althaf Basha
  • Julian M. Rosalie
  • Hidetoshi Somekawa
  • Takashi Miyawaki
  • Alok Singh
  • Koichi Tsuchiya
چکیده

Microstructural investigation of extremely strained samples, such as severely plastically deformed (SPD) materials, by using conventional transmission electron microscopy techniques is very challenging due to strong image contrast resulting from the high defect density. In this study, low angle annular dark field (LAADF) imaging mode of scanning transmission electron microscope (STEM) has been applied to study the microstructure of a Mg-3Zn-0.5Y (at%) alloy processed by high pressure torsion (HPT). LAADF imaging advantages for observation of twinning, grain fragmentation, nucleation of recrystallized grains and precipitation on second phase particles in the alloy processed by HPT are highlighted. By using STEM-LAADF imaging with a range of incident angles, various microstructural features have been imaged, such as nanoscale subgrain structure and recrystallization nucleation even from the thicker region of the highly strained matrix. It is shown that nucleation of recrystallized grains starts at a strain level of revolution [Formula: see text] (earlier than detected by conventional bright field imaging). Occurrence of recrystallization of grains by nucleating heterogeneously on quasicrystalline particles is also confirmed. Minimizing all strain effects by LAADF imaging facilitated grain size measurement of [Formula: see text] nm in fully recrystallized HPT specimen after [Formula: see text].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DISLOCATIONS STRUCTURE AND SCATTERING PHENOMENON IN CRYSTALLINE CELL SIZE OF 2024 AL ALLOY DEFORMED BY ONE PASS OF ECAP AT ROOM TEMPERATURE

Variation in microstructural features of 2024 aluminum alloy plastically deformed by equal channel angular pressing (ECAP) at room temperature, was investigated by X-Ray diffraction in this work. These include dislocation density dislocation characteristic and the cell size of crystalline domains. Dislocations contrast factor was calculated using elastic constants of the alloy such as C 11, C 2...

متن کامل

Effect of Pre-existing Nano Sized Precipitates on Microstructure and Mechanical Property of Al-0.2wt% Sc Highly Deformed by ARB Process

The effect of pre-existing nano sized precipitates on the mechanisms and rate of grain refinement has been investigated during the severe plastic deformation. A binary Al–0.2Sc alloy, containing coherent Al3Sc particles, of 3.62 nm in diameter has been deformed by accumulative roll bonding up to 10 cycles. The resulting deformed structures were quantitatively analyzed using electron backscatter...

متن کامل

Towards a Uniform Model for Lattice Defect Image Simulations

For more than seven decades, diffraction contrast in the TEM has been used for the study of both linear and planar lattice defects, such as dislocations, stacking faults, anti-phase boundaries, and so on. In recent years, several alternative approaches for defect imaging have become available: using a standard annular dark field detector, the STEM diffraction contrast image (DCI) mode produces ...

متن کامل

Investigation of the Microstructure Evolution and Deformation Mechanisms of a Mg-Zn-Zr-RE Twin-Roll-Cast Magnesium Sheet by In-Situ Experimental Techniques

Twin roll casting (TRC), with a relatively fast solidification rate, is an excellent production method with promising potential for producing wrought semi or final Mg alloy products that can often suffer from poor formability. We investigate in this study the effect of the TRC method and the subsequent heat treatment on the microstructure and deformation mechanisms in Mg-Zn-Zr-Nd alloy deformed...

متن کامل

Discontinuous Dynamic Recrystallization during Accumulative Back Extrusion of a Magnesium Alloy

The study of nucleation mechanism of new grains during severe plastic deformation of magnesium alloys is of great importance to control the characteristics of final microstructures.  To investigate the role of discontinuous recrystallization, a wrought AZ31 magnesium alloy was deformed by accumulative back extrusion process at 330 °C.  The obtained microstructures were studied using optical and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016